Ab Initio MO Study of the CO₂ Insertion into the Cu(I)-R Bond (R = H, CH₃, or OH). Comparison between the CO₂ Insertion and the C₂H₄ Insertion

Shigeyoshi Sakaki* and Yasuo Musashi

Department of Applied Chemistry, Faculty of Engineering, Kumamoto University, Kurokami, Kumamoto 860 Japan

Received November 24, 1993[®]

Ab initio MO/MP4, SD-CI, and CCD (coupled cluster (doubles)) calculations are carried out on the insertion reactions of CO₂ and C₂H₄ into the Cu-R (R = H, CH₃, and OH) bond. The insertion into the Cu-CH₃ bond occurs with a higher activation energy than the corresponding insertion into the Cu-H bond. This is because Cu(CH₃)(PH₃)₂ distorts at the TS to a greater extent than CuH(PH₃)₂, due to the highly directional sp³ valence orbital of CH₃ unlike the spherical 1s valence orbital of H. The CO₂ insertion into the Cu-H and Cu-CH₃ bonds occurs with a lower activation energy and a higher exothermicity than the C₂H₄ insertion. The higher exothermicity of the CO₂ insertion is because the Cu-OC(O)R bond is stronger than the Cu-CH₂CH₂R bond. The reason for the lower activation energy is that the π orbital of CO₂ lies at lower energy level than that of C₂H₄; accordingly, the exchange repulsion between R and CO₂ is smaller than that between R and C₂H₄. The CO₂ insertion into the Cu-OH bond proceeds with no barrier. The main reason is that the lone-pair orbital of OH, which is not used for coordination to Cu, can form a bonding interaction between OH and CO₂ without weakening of the Cu-OH bond.

Introduction

CO₂ insertion into the M–R (R = H, CH₃, or OR) bond has received considerable interest in the chemistry of CO₂ fixation¹ because similar insertion reactions of alkene, alkyne, and CO are involved as key processes in many homogeneous catalytic cycles.² Actually, many examples of the catalytic CO₂ conversion into organic chemicals involve the CO₂ insertion as an important elementary step.^{3–12} General knowledge about the

- For instance; (a) Darensbourg, D. J.; Kudaroski, R. A. Adv. Organomet. Chem. 1983, 22, 129. (b) Palmer, D. A.; van Eldik, R. Chem. Rev. 1983, 83, 651. (c) Walther, D. Coord. Chem. Rev. 1987, 79, 135. (d) Behr, A. Angew. Chem., Int. Ed. Engl. 1988, 27, 661. (e) Braustein, P.; Matt, D.; Nobel, D. Chem. Rev. 1988, 88, 747. (f) Culter, A. R.; Hanna, P. K.; Vites, J. C. Chem. Rev. 1988, 88, 1363. (g) Behr, A. Carbon Dioxide Activation by Metal Complexes; VCH Publishing: Weinheim, Germany, 1988.
- (2) For instance; (a) Alexander, J. J. In *The Chemistry of the Metal-Carbon Bond*; Hartley, F. R.; Patai, S., Ed.; John Wiley & Sons: New York, 1985; Vol. 2, p 339. (b) *The Chemistry Metal-Carbon Bond*; Hartley, F. R.; Patai, S., Ed.; John Wiley & Sons: New York, 1985; Vol. 3. (c) Crabtree, R. H. *The Organometallic Chemistry of Transition Metals*, John Wiley & Sons, New York, 1988.
- (3) (a) Inoue, S.; Takeda, N. Bull. Chem. Soc. Jpn. 1977, 50, 984. (b) Aida, T.; Inoue, S. J. Am. Chem. Soc. 1983, 105, 1304. (c) Kojima, F.; Aida, T.; Inoue, S. J. Am. Chem. Soc. 1986, 108, 391. (d) Aida, T.; Ishikawa, M.; Inoue, S. Macromolecules 1986, 19, 8. (e) Hirai, Y.; Aida, T.; Inoue, S. J. Am. Chem. Soc. 1989, 111, 3062. (f) Komatsu, M.; Aida, T.; Inoue, S. J. Am. Chem. Soc. 1991, 113, 8492.
- (4) Rokicki, A.; Kuran, W. J. Macromol. Sci. Rev. Macromol. Chem. 1981, 135, C21.
- (5) Soga, K.; Imai, E.; Hattori, I. Polym. J. 1981, 13, 407.
- (6) Gambarotta, S.; Strologo, S.; Floriani, C.; Chiesi-Villa, A.; Guastini, C. J. Am. Chem. Soc. 1985, 107, 6278.
- (7) (a) Carmona, E.; Palma, P.; Paneque, M.; Poveta, M. L. J. Am. Chem. Soc. 1986, 108, 6424. (b) Carmona, E.; Gutiérrez-Puebla, E.; Marin, J. M.; Monge, A.; Paneque, M.; Poveta, M. L.; Ruiz, C. J. Am. Chem. Soc. 1989, 111, 2883.
- (8) Braunstein, P.; Matt, D.; Nobel, D. J. Am. Chem. Soc. 1988, 110, 3207.
- (9) Darensbourg, D. J.; Ovalles, C. J. Am. Chem. Soc. 1989, 109, 3330.
- (10) Aye, K. T.; Gelmini, L.; Payne, N. C.; Vittal, J. J.; Puddephatt, R. J. J. Am. Chem. Soc. 1990, 112, 2464.
- (11) (a) Amatore, C.; Jutand, A. J. Am. Chem. Soc. 1991, 113, 2819. (b) Amatore, C.; Jutand, A. J. Electroanal. Chem. 1991, 306, 141.

 CO_2 insertion is, therefore, necessary to a good understanding of the CO_2 fixation and finding a new efficient catalyst for the CO_2 fixation. In this context, experimental investigation of the CO_2 insertion has been actively carried out, in which various valid data have been reported.¹³⁻³² Not only experimental work but also theoretical work is expected to offer such general

- (12) Tsai, J. C.; Nicholas, K. M. J. Am. Chem. Soc. 1992, 114, 5117.
- (13) (a) Pu, L. S.; Yamamoto, A.; Ikeda, S. J. Am. Chem. Soc. 1968, 90, 3896. (b) Komiya, S.; Yamamoto, A. J. Organomet. Chem. 1972, 46, C58. (c) Miyashita, A.; Yamamoto, A. J. Organomet. Chem. 1973, 49, C57. (d) Ikariya, T.; Yamamoto, A. J. Organomet. Chem. 1974, 72, 145. (e) Miyashita, A.; Yamamoto, A. J. Organomet. Chem. 1976, 113, 187. (f) Komiya, S.; Yamamoto, A. Bull. Chem. Soc. Jpn. 1976, 49, 784. (g) Yamamoto, T.; Kubota, M.; Yamamoto, A. Bull. Chem. Soc. Jpn. 1980, 53, 680.
- (14) Misono, A.; Uchida, Y.; Hidai, M.; Kuse, T. J. Chem. Soc., Chem. Commun. 1968, 981.
- (15) Zucchini, V.; Albizzati, E.; Giannini, V. J. Organomet. Chem. 1971, 26, 357.
- (16) (a) Tsuda, T.; Saegusa, T. Inorg. Chem. 1972, 11, 2561. (b) Tsuda, T.; Ueda, T. J. Chem. Soc., Chem. Commun. 1974, 380. (c) Tsuda, T.; Chujo, Y.; Saegusa, T. J. Chem. Soc., Chem. Commun. 1975, 963. (d) Tsuda, T.; Sanada, S.; Ueda, K.; Saegusa, T. Inorg. Chem. 1976, 15, 2329. (e) Tsuda, T.; Chujo, Y.; Saegusa, T. J. Am. Chem. Soc. 1978, 100, 630. (f) Tsuda, T.; Chujo, Y.; Saegusa, T. J. Am. Chem. Soc. 1980, 102, 431.
- (17) Kolomnikov, I. S.; Gusev, A. I.; Aleksandrov, G. G.; Lobeeva, T. S.;
- Struchkov, Yu. I.; Vol'pin, M. E. J. Organomet. Chem. 1973, 59, 349.
 (18) Cahiez, G.; Normant, J. F.; Bernard, D. J. Organomet. Chem. 1975, 94, 463.
- (19) Karsch, H. H. Chem. Ber. 1977, 110, 2213.
- (20) Koinuma, H.; Yoshida, Y.; Hirai, H. Chem. Lett. 1975, 1223.
- (21) Inoue, Y.; Izumida, H.; Sasaki, Y.; Hashimoto, H. Chem. Lett. 1976, 863.
- (22) (a) Chisholm, M. H.; Reichert, W. W.; Cotton, F. A.; Murillo, C. A. J. Am. Chem. Soc. 1977, 99, 1652. (b) Chisholm, M. H.; Cotton, F. A.; Extine, M. W.; Reichert, W. W. J. Am. Chem. Soc. 1978, 100, 1727.
- (23) Yoshida, T.; Thorn, D. L.; Okano, T.; Ibers, J. A.; Ohtsuka, S. J. Am. Chem. Soc. 1979, 101, 4212.
- (24) Van Eldik, R.; Palmer, D. A.; Kelm, H.; Harris, G. M. Inorg. Chem. 1980, 19, 3679.
- (25) Razuvaef, G. A.; Vyshinskaya, L. I.; Drobotenko, V. V.; Malkova, G. Y.: Vysinski, N. N. J. Organomet. Chem. 1982, 239, 335.
- (26) Marsich, N.; Camus, N.; Nardin, G. J. Organomet. Chem. 1982, 239, 429.

0020-1669/95/1334-1914\$09.00/0

© 1995 American Chemical Society

[®] Abstract published in Advance ACS Abstracts, March 1, 1995.

knowledge. However, only few MO studies have been carried out on the CO₂ insertion.^{33,34} In those studies, the geometry of transition state (TS) has not been optimized, and calculation at the correlated level has not been performed except for preliminary MP2 calculations of the CO₂ insertion into the Cu(I)-H and Cu(I)-CH₃ bonds.³³

In this work, the CO₂ insertion into the Cu(I)-R bond (R = H, CH₃, or OH) is theoretically investigated with the ab initio MO/MP4, SD-CI, and CCD (coupled cluster (doubles)) methods.

$$CuR(PH_{3})_{2} + CO_{2} \rightarrow Cu(\eta^{1} - OCOR)(PH_{3})_{2} \rightarrow Cu(\eta^{2} - O_{2}CR)(PH_{3})_{2}$$
(1)

This reaction is selected here, considering that there are many experimental reports on the insertion reactions of CO2 into Cu-(I)-alkyl,^{13c-e,16b,e,18,26,27q} Cu(I)-hydride,²⁸ and Cu(I)-alkoxide bonds.^{13g,16a,d,f} Our aims in this work are (a) to optimize the geometry of the TS, (b) to estimate the activation energy and the energy of reaction, (c) to reveal characteristic features of the CO_2 insertion by comparing it with the C_2H_4 insertion (eq 2), and (d) to clarify the factors determing the ease of the CO_2

$$\operatorname{CuR}(\operatorname{PH}_3)_2 + \operatorname{C}_2\operatorname{H}_4 \rightarrow \operatorname{Cu}(\operatorname{CH}_2\operatorname{CH}_2\operatorname{R})(\operatorname{PH}_3)_2 \qquad (2)$$

insertion. Points of departure from previous works^{33,34} are presenting (i) detailed knowledge of the TS structure and (ii) discussion based on the calculations at the correlated level.

Computational Details

Ab initio closed-shell Hartree-Fock (HF), MP2-MP4(SDQ), SD-CI, and coupled cluster (doubles; CCD) calculations were carried out with Gaussian 8635a and 9235b programs, where four kinds of basis sets were employed. In the small basis set (BS I), core electrons of Cu (up to 3p) were replaced with effective core potentials (ECP1) given by Hay et al.³⁶ and its 3d, 4s, and 4p valence orbitals were represented with a (3s 2p 5d)/ [2s 2p 2d] set. The usual MIDI-3³⁷ and (4s)/[2s]³⁸ sets were used for C, O, and H respectively. STO-2G³⁹ sets were

- (27) (a) Darensbourg, D. J.; Rokicki, A. J. Am. Chem. Soc. 1982, 104, 349. (b) Slater, S. G.; Lusk, R.; Schumann, B. F.; Darensbourg, M. Organometallics, 1982, 1, 1662. (c) Darensbourg, D. J.; Rokicki, A. Organometallics 1982, 1, 1685. (d) Darensbourg, D. J.; Pala, M.; Waller, J. Organometallics. 1983, 2, 1285. (e) Darensbourg, D. J.; Kudaroski, R. J. Am. Chem. Soc. 1984, 106, 3672. (f) Darensbourg, D. J.; Ovalless, C. J. Am. Chem. Soc. 1984, 106, 3750. (g) Darensbourg, D. J.; Pala, M. J. Am. Chem. Soc. 1984, 107, 5687. (h) Darensbourg, D. J.; Hanckel, R. K.; Bauch, C. G.; Pala, M.; Simmons, D.; White, J. N. J. Am. Chem. Soc. 1985, 107, 7463. (i) Darensbourg, D. J.; Grötsch, G. J. Am. Chem. Soc. **1985**, 107, 7473. (j) Darensbourg, D. J.; Bauch, C. G.; Rheingold, A. L. Inorg. Chem. **1987**, 26, 977. (k) Darensbourg, D. J.; Sanchez, K. M.; Rheingold, A. L. J. Am. Chem. Soc. 1987, 109, 290. (1) Darensbourg, D. J.; Grötsch, G.; Wiegreffe, P.; Rheingold, A. L. Inorg. Chem. 1987, 26, 3827. (m) Darensbourg, D. J.; Darensbourg, M. Y.; Goh, L. Y.; Ludvig, M.; Wiegreffe, P. J. Am. Chem. Soc. 1987, 109, 7539. (n) Darensbourg, D. J.; Sanchez, K. M.; Reibenspies, J. H.; Rheingold, A. L. J. Am. Chem. Soc. 1989, 111, 7094. (o) Darensbourg, D. J.; Wiegreffe, H. P.; Riordan, C. G. J. Am. Chem. Soc. 1990, 112, 5759. (p) Darensbourg, D. J.; Wiegreffe, H. P.; Wiegreffe, P. W. J. Am. Chem. Soc. **1990**, 112, 9252. (q) Darensbourg, D. J.; Mueller, B. L.; Bischoff, C. J.; Chojnacki, S. S. Inorg. Chem. 1991, 30, 2418.
- (28) Bianchini, C.; Ghilardi, C. A.; Meli, A.; Midollini, S.; Orlandini, A. Inorg. Chem. 1985, 24, 924.
- (29) Cocolios, P.; Guilard, R.; Bayeul, D.; Lecomte, C. Inorg. Chem. 1985, 24, 2058
- (30) Kaska, W. C.; Nemeh, S.; Shirazi, A.; Potuznik, S. Organometallics 1988, 7, 13.
- (31) Arai, T.; Sato, Y.; Inoue, S. Chem. Lett. 1990, 551.
- (32) Hartwig, J. F.; Bergman, R. G.; Andersen, R. A. J. Am. Chem. Soc. 1991, *Ĭ13*, 6499.
- (33) (a) Sakaki, S.; Ohkubo, K. Inorg. Chem. 1988, 27, 2020. (b) Sakaki, S.; Ohkubo, K. Inorg. Chem. 1989, 28, 2583. (c) Sakaki, S.; Ohkubo, K. Organometallics 1989, 8, 2970.
- (34) Bo, C.; Dedieu, A. Inorg. Chem. 1989, 28, 304.

employed for PH₃. In the second (BS II), core electrons of Cu (up to 2p) were replaced with effective core potentials (ECP2), and its valence orbitals (3s, 3p, 3d, 4s, and 4p) were represented with a (5s 5p 5d)/[3s $3p 3d] set.^{40}$ The usual MIDI-4 sets³⁷ were used for C, O, and P, and the (4s)/[2s] set was employed for H.³⁸ In the third (BS III), an all electron type basis set was used for Cu; Huzinaga's (13s 7p 4d) primitive set³⁷ was augmented with one diffuse d primitive function (ζ $= 0.141)^{41}$ and two p primitive functions describing the valence 4p orbital, and the resultant (13s 9p 5d) primitive set was contracted to a [5s 4p 3d] set. For the other atoms, the same basis sets as those in BS II were used. In the fourth (BS IV), (9s 5p)/[3s 2p]³⁸ sets were used for C and O. For Cu, a (14s 9p 5d) primitive set of Wachters⁴² was augmented with one diffuse d primitive function ($\zeta = 0.1491$) given by Hay⁴³ and two p primitive functions ($\zeta = 0.155\ 065$ and 0.046 199) describing the valence 4p orbitals.⁴⁴ The resultant (14s 11p 6d) primitive set was contracted to a [5s 4p 3d] set. For PH₃, the same basis sets as those in the BS II and BS III were used. The BS I set was used only for geometry optimization, the BS II-IV sets were used for examination of basis set effects, and the BS III set was used for discussion of energy change, electron redistribution, and change in bonding nature by the insertion reactions. Calculations at the correlated level were performed with all the core orbitals excluded from an active space.

Both insertion reactions of CO₂ and C₂H₄ are considered to proceed via the precursor complexes (PC) and TS, as shown in Scheme 1. Geometries of CO₂, C_2H_4 , $CuR(PH_3)_2$ (1) (see Scheme 1 for 1-10), PC (2, 7), TS (3, 8), and products (4-6, 9, 10) were optimized with the energy gradient method at the HF level, in which the geometry of PH₃ was fixed to the experimental structure of the free PH₃ molecule.⁴⁵ There are several possible isomers in the products; see 4-6 in the CO₂ insertion and 9 and 10 in the C_2H_4 insertion. 4A and 4B could not be optimized since they converted to 5A and 5B, respectively, with no barrier.³³ Their MO calculations were carried out, assuming the geometry of the OC(O)R group and the Cu-O distance to be the same as those in 5A and 5B. Because 5B converted to 6B with no barrier, the geometry of **5B** was optimized on the assumption that the $Cu-O^1$ bond was fixed on the Cu(PH₃)₂ plane. Geometries of 9A and 9B were optimized under the constraint of C_s symmetry. In the CO₂ insertion into the Cu-OH bond, PC and TS could not be optimized because this reaction proceeded with no barrier at both HF and correlated levels (vide infra). Geometry changes by this insertion were optimized, taking the distance between O of OH and C of CO₂ as a reaction coordinate.

Results and Discussion

Effects of Basis Set and Electron Correlation on the CO₂ and C_2H_4 Insertions. Prior to detailed discussion, we will

- (35) (a) Frisch, M. J.; Binkley, J. S.; Schlegel, H. B.; Raghavachari, K.; Melius, C. F.; Martin, R. L.; Stewart, J. J. P.; Bobrowicz, F. W.; Rohlfing, C. M.; Kahn, L. R.; DeFrees, D. J.; Seeger, R.; Whiteside, R. A.; Fox, D. J.; Fluder, E. M.; Topiol, S.; Pople, J. A. Gaussian 86; Carnegie-Mellon Quantum Chemistry Publishing Unit; Pittsburgh, PA, 1986. (b) Frisch, M. J.; Trucks, G. W.; Head-Gordon, M.; Gill, P. M. W.; Wong, M. W.; Foresman, J. B.; Johnson, B. G.; Schlegel, H. B.; Robb, M. A.; Replogle, E. S.; Gomperts, R.; Andres, J. L.; Raghavachari, K.; Binkley, J. S.; Gonzalez, C.; Martin, R. L.; Fox, D. J.; DeFrees, D. J.; Baker, J.; Stewart, J. J. P.; Pople, J. A. Gaussian 92; Gaussian, Inc.: Pittsburgh PA, 1992. (36) Hay, P. J.; Wadt, W. R. J. Chem. Phys. **1985**, 82, 270.
- (37) Huzinaga, S.; Andzelm, J.; Klobukowski, M.; Radzio-Andzelm, E.; Sakai, Y.; Tatewaki, H. Gaussian Basis Sets for Molecular Calculations; Elsevier: Amsterdam, 1984.
- (38)Dunning, T. H.; Hay, P. J. In Methods of Electronic Structure Theory; Schaefer, H. F., Ed.; Plenum: New York, 1977; p 1.
- Hehre, W. J.; Stewart, R. F.; Pople, J. A. J. Chem. Phys. 1969, 51, (39)2657
- (40) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.
- (41) This exponent was determined, according to an even-tempered criterion.
- (42) Wachters, A. J. H. J. Chem. Phys. 1970, 52, 1033.
- (43) Hay, P. J. J. Chem. Phys. 1977, 66, 4377.
- (44) Original exponents which mainly represent 4p orbitals of Cu were used not directly but after scaling up by a factor 1.5, to make them suitable for molecular calculation.4
- (45) Herzberg, G. Molecular Spectra and Molecular Structure; D. Van Nostrand Co. Inc.: Princeton, NJ, 1967; Vol. 3, p 610.

Table 1. Effects of Basis Sets and Electron Correlation for CO₂ and C₂H₄ Insertions into the Cu-H bond (kcal/mol)

		(,	A) Basis Set	Effects at the H	Hartree-Fock Lev	el (CO ₂ Inser	tion into the Cu-H	I Bond)	
		BS I		BS II	BS III		BS IV	BS V ^a	BS VI ^b
$E_{a}^{c} \Delta E^{d}$		7.0 —38.9		3.7 -50.4	4.2 -48.5		1.6 -53.8	12.5 -37.5	5.4 -56.8
				(]	B) Electron correla	ation effects			
	HF	MP2	MP3	MP4(DQ)	MP4(SDQ)	SD-CI	$SD-CI + D^{e}$	SD-CI + DS	$SD-CI + P^{g}$
				(a) C	O ₂ Insertion into t	he Cu-H Bo	ond		
E_{a}	4.2	8.3	2.2	6.5	7.9	4.5	5.3	4.2	4.3
ΔE	-48.5	-30.1	-43.9	-36.0	-33.1	-43.1	-41.0	-40.0	-39.7
				(b) C ₂	2H4 Insertion into (the Cu-H B	ond		
E_{a}	23.3	2.7	11.6	6.8	2.0	6.8	2.0	12.6	9.9
ΔE	-13.5	-19.4	-16.5	-15.2	-18.3	-16.9	-16.8	-16.3	-16.4

^{*a*} BS V (BS II of ref 33b). The basis set for Cu was the same as it in BS I, while the basis sets for the other part were the same as those in BS IV. ^{*b*} BS VI (BS III of ref 33b). The basis sets for Cu, C, and O were the same as those in BS III, while MIDI-3 was used for PH₃. ^{*c*} E_a = the energy difference between the transition state and the precursor complex (PC). ^{*d*} ΔE = the energy difference between product and PC. ^{*c*} D = the Davidson correction for higher order excitations.⁴⁸ ^{*s*} P = the Pople correction for higher order excitations.⁴⁹

briefly examine basis set effects on the CO₂ insertion into the Cu-H bond. As shown in Table 1A, the activation energy, E_a , and the energy difference between the PC and the product, ΔE , significantly decrease upon going to BS V from BS VI,33b whereas only the basis set for Cu is different between BS V and BS VI; in BS VI, a (3s 2p 5d)/[2s 2p 2d] set is employed with the ECP1,³⁶ but in BS VI, an all electron type basis set⁴² is used (see footnotes a and b of Table 1 for BS V and BS VI). Similarly, E_a and ΔE considerably decrease upon going to BS II from BS I. On the other hand, BS II, BS III, and BS IV yield similar values for E_a and ΔE . These results lead to the following findings: (1) E_a and ΔE do not depend much on the basis sets of ligand atoms but significantly depend on the ECPs for Cu, (2) Huzinaga's basis set and Wachters' one for Cu give similar results for E_a and ΔE , (3) the basis set involving the ECP1 yields considerably different results from others, and (4) BS II involving ECP2 yields almost the same results as the better basis sets such as BS III and BS IV. Thus, use of either BS II or better basis sets is necessary in estimating the energy change. Very recently, use of ECP2 has also been recommended.⁴⁶

Then, we will inspect the correlation effects on E_a and ΔE (Table 1B). Unexpectedly, E_a of the CO₂ insertion little changes upon introducing electron correlation, except that the E_a value slightly fluctuates at the MP2 level. On the other hand, introduction of electron correlation considerably changes the E_a of the C₂H₄ insertion and the ΔE of both CO₂ and C₂H₄ insertion reactions. An important result to be noted is that both E_a of the C₂H₄ insertion and ΔE of CO₂ and C₂H₄ insertion reactions considerably fluctuate at MP2-MP4(SDQ) levels, demonstrating that the MP2-MP4(SDQ) methods are not reliable in investigating these insertion reactions. On the other hand, SD-CI and CCD methods give similar results on E_a and ΔE , suggesting that these methods are reliable (see Tables 1B, 2, and 3). The discussion presented below is based on the SD-CI and CCD calculations with BS-III.

- (47) Langhoff, S. R.; Davidson, E. R. Int. J. Quantum Chem. 1974, 8, 61.
- (48) Davidson, E. R.; Silver, D. W. Chem. Phys. Lett. 1977, 52, 403.
- (49) Pople, J. A.; Seeger, R.; Krishnan, R. Int. J. Quantum Chem. Symp. 1977, 11, 149.

 ^{(46) (}a) Hay, P. J. New. J. Chem. 1991, 15, 735. (b) Leininger, T.; Riehl, J.-F.; Jeung, G.-H.; Pélissier, M. Chem. Phys. Lett. 1993, 205, 301.

Table 2. Energy Change by CO_2 Insertion into the Cu-R (R = H, CH₃) Bond (kcal/mol)

		MP4(SDQ)	$SDCI-DS^a$	CCD
(A) CO ₂ Inser	tion	into the Cu-H	I Bond	
$CuH(PH_3)_2(1A) + CO_2$		0.0	0.0^{c}	0.0^{d}
precursor complex	2A	-4.5	-5.0	-4.7
transition state	3A	3.4	-0.8	-0.4
$Cu(\eta^1 - OCOH)(PH_3)_2$	4 A	-22.3	-28.4	
· · ·	5A	-35.2	-42.1	
$Cu(\eta^2-O_2CH)(PH_3)_2$	6A	-37.0	44.5	-44.7
(B) CO ₂ Inserti	ion ir	nto the Cu-Cl	H ₃ Bond	
$Cu(CH_3)(PH_3)_2(1B) + CO_2$		0.0^{e}	0.0	
precursor complex	2B	-5.2	-5.2	
transition state	3B	10.5	4.1	
$Cu(\eta^1$ -OCOCH ₃)(PH ₃) ₂	4B	-13.2	-20.6	
	5B	-39.0	-47.1	
$Cu(\eta^2 - O_2 CCH_3)(PH_3)_2$	6B	-40.7	-49.1	

^{*a*} DS = Davidson-Silver's correction for higher order excitations.⁴⁸ ^{*b*} $E_t(MP4(SDQ)) = -2510.0628 \ ^{c} E_t(SDCI + (DS)) = -2510.0080^{d} E_t$ = -2509.9929 $^{e} E_t(MP4(SDQ)) = -2549.1425 \ ^{f} E_t(SDCI + (DS)) = -2549.0848$ (hartree units).

Table 3. Energy Change by C_2H_4 Insertion into the Cu-R (R = H, CH₃) Bond (kcal/mol)

compd		MP4(SDQ)	SDCI-DS ^a	CCD
(A) C ₂ H ₄ inse	rtion	into the Cu-l	H bond	
$CuH(PH_3)_2(1A) + C_2H_4$		0.0^{b}	0.0^{c}	0.04
precursor complex	7A	-1.2	1.3	-0.8
transition state	8A	0.8	6.7	9.7
$Cu(C_2H_5)(PH_3)_2$	9A	-16.4	-14.5	
	10A	-19.5	-17.6	-16.4
(B) C ₂ H ₄ Inser	tion ir	to the Cu-C	H₃ Bond	
$Cu(CH_3)(PH_3)_2 \mathbf{1B} + C_2H_4$		0.0^{e}	0.0	
precursor complex	7B	-2.8	1.0	
transition state	8B	22.5	23.4	
$Cu(C_{3}H_{7})(PH_{3})_{2}$	9B	-11.5	-11.2	
	10 B	-18.9	-18.3	

^{*a*} DS = Davidson-Silver correction for higher order excitations.⁴⁸ ^{*b*} $E_t(MP4(SDQ)) = -2400.5232 \,^{c} E_t(SDCI + (DS)) = -2400.4794$ ^{*d*} $E_t(CCD) = -2400.4669 \,^{c} E_t(MP4(SDQ)) = -2439.6029 \,^{f} E_t(SDCI + (DS)) = -2439.5565$ (hartree units).

Relative Stabilities of the Products and the Energy of Reaction. Relative stabilities of the products are given in Tables 2 and 3 as an energy difference from the sum of reactants, $1A + CO_2$, $1A + C_2H_4$, $1B + CO_2$, and $1B + C_2H_4$, where a negative value represents a stabilization energy (and vice versa).

In the product of the CO₂ insertion, **6A** and **6B** are calculated to be the most stable in **4A–6A** and **4B–6B**, respectively, suggesting that Cu(η^2 -O₂CR)(PH₃)₂ is a final product of the CO₂ insertion.³³ Relative stabilities of these products have been discussed in our previous work^{33b} and the discussion is omitted here. Both CO₂ insertion reactions into the Cu–H and Cu– CH₃ bonds are significantly exothermic, and the exothermicity of the former is slightly greater than that of the latter.

In the product of the C_2H_4 insertion, **10A** and **10B** are calculated to be more stable than **9A** and **9B**, respectively, indicating that **10A** and **10B** are final products. The exothermicity of the C_2H_4 insertion reaction hardly depends on the kind of R.

One of the differences between CO_2 insertion and C_2H_4 insertion is that the former is much more exothermic than the latter. This difference is rationalized in terms of bond energies.⁵⁰ In the CO_2 insertion into the Cu–CH₃ bond, the CH₃–C(O)O– bond is newly formed, and the Cu-CH₃ and =C=O bonds change to the Cu-OC(O)CH₃ and =C(O-)- bonds respectively. Thus, the exothermicity (E_{exo}) is approximately represented by eq 3. In the C₂H₄ insertion into the Cu-CH₃ bond,

$$E_{\text{exo}} = E(\text{Cu}-\text{OC}(\text{O})\text{CH}_3) + E(=\text{C}(\text{O}-)-) + E(\text{CH}_3-\text{C}(\text{O})\text{O}-) - E(\text{Cu}-\text{CH}_3) - E(=\text{C}=\text{O})$$

$$E_{\text{exo}} = \{E(\text{Cu}-\text{OC}(\text{O})\text{CH}_3) - E(\text{Cu}-\text{CH}_3)\} + \{E(=C(\text{O})-) - E(=C=\text{O})\} + E(\text{CH}_3-C(\text{O})\text{O}-) (3)\}$$

the Cu-CH₃ and >C=C< bonds change to the Cu-C₃H₇ and the -CH₂-CH₂- bond respectively, and the -CH₂-CH₃ bond is newly formed. In this case, E_{exo} is approximately represented, as follows:

$$E_{\text{exo}} = E(\text{Cu}-\text{C}_{3}\text{H}_{7}) - E(\text{Cu}-\text{CH}_{3}) + E(-\text{CH}_{2}-\text{CH}_{3}) + E(-\text{CH}_{2}-\text{CH}_{3}) + E(-\text{CH}_{2}-\text{CH}_{2}-) - E(\text{C}=\text{C}) \\ \sim \{E(-\text{CH}_{2}-\text{CH}_{2}-) - E(\text{>}\text{C}=\text{C}<)\} + E(-\text{CH}_{2}-\text{CH}_{3})$$
(4)

 $E(Cu-CH_3)$ is considered to be almost the same as $E(Cu-C_3H_7)$.

A difference between =C=O and =C(O-)- bond energies appearing in eq 3 can be estimated from the energy difference (ΔE_{r-1}) between right- and left-hand sides of eq 5, as follows:

$$CO_2 + H_2 \rightarrow H - C(O)OH$$
 (5)

$$\Delta E_{r-1} = E(H-H) + E(=C=O) - E(=C(O-)-) - E(=C(H)-) - E(-O-H)$$
(6a)

$$E(=C=O) - E(=C(O-)-) = \Delta E_{r-1} - E(H-H) + E(=C(H)-) + E(-O-H)$$
(6b)

Similarly, a difference between the $>C=C < and -CH_2-CH_2$ bond energies can be estimated from ΔE_{r-1} of eq 7:

$$C_2H_4 + H_2 \rightarrow H_3C - CH_3 \tag{7}$$

$$\Delta E_{r-1} = E(H-H) + E(>C=C<) - E(>C-C<) - 2E(>C-H)$$
(8a)

$$E(>C=C<) - E(>C-C<) = \Delta E_{r-1} - E(H-H) + 2E(>C-H)$$
(8b)

In these estimations, the H–H and \geq C–H bond energies are calculated with MP2–MP4(SDQ) and SD–CI/BS III methods (Table 4), where geometries of $^{\circ}C_{2}H_{5}$, $^{\circ}C(O)OH$, and H–C(O)-O[•] radicals are optimized with the ROHF/BS I method. A difference between Cu–CH₃ and Cu–OC(O)R bond energies can be evaluated, considering the energy difference between right- and left-hand sides of eq 9, where –O–H and H–C(O)-

$$Cu(CH_3)(PH_3)_2 + H - OC(O)R \rightarrow Cu(OC(O)R)(PH_3)_2 + H - CH_2 \quad (9)$$

$$\Delta E_{r-1} = E(H-CH_3) + E(Cu-OC(O)R) - E(Cu-CH_3) - E(-O-H)$$
(10a)
$$E(Cu-OC(O)R) - E(Cu-CH_3) = \Delta E_{r-1} - E(H-CH_3) - E(-O-H)$$
(10b)

OR bond energies can be estimated as described above. Using these bond energies and their differences (Table 4), a difference in E_{exo} between CO₂ and C₂H₄ insertion reactions can be easily

⁽⁵⁰⁾ We discuss the exothermicity of $Cu(\eta^{1}-OC(O)R)(PH_{3})_{2}$ (5A, 5B, or 5C) here, because the final product, $Cu(\eta^{2}-O_{2}CR)(PH_{3})_{2}$ (6A, 6B, or 6C) is only slightly more stable than 5A, 5B, and 5C, respectively (see Table 2 and Figure 5).

		E(H-		E(H-	$E(H_{3}C-$	E(H-	E(C=0) - T	E(C=C) -	$E(H_{3}C-$	E(HO			$E(Cu-OC(O)CH_3) -$	E(Cu-OC(0)H) -	E(Cu-OCOOH) -
	E(H-H)	COOH)	E(HCOO-H)	CH ₃)	CH ₃)	C_2H_5	È(C-O)	E(C-C)	COOH)	COOH)	E(HOCOO-H)	E(HOH)	$E(Cu-CH_3)$	E(Cu-H)	E(Cu-OH)
MP4(SDQ)	97.5	98.0	103.7	100.5	58.7	102.3	106.5	72.0	92.0	87.1	100.7	100.8	49.4	37.5	29.5
SD-CI + DS ^a	97.9	93.8	102.1	100.4	58.1	104.4	102.6	74.6	86.7	64.3	99.5	98.7	55.6	34.4	29.5
a DS = Davi	dson-Silv	er's correc	ction for higher	r order e	excitations	48									

Bond Energies and Their Differences (kcal/mol)

Table 4.

Figure 1. Optimized geometries of precursor complexes in the CO_2 and C_2H_4 insertions into the Cu-H and Cu-CH₃ bonds. Bond lengths are given in Å and angles in degree.

explained. The difference between =C=O and =C(O-)- bond energies is about 100 kcal/mol, about 30 kcal/mol greater than the difference between >C=C < and -CH₂-CH₂- bond energies. Thus, the E(=C(O-)-) - E(=C=O) term is not responsible for the higher exothermicity of the CO₂ insertion. The H₃C-CH₃ bond energy does not differ very much from the H₃C-C(O)OR bond energy (see Table 4), yielding only a little difference in the exothermicity between the CO₂ and C₂H₄ insertion reactions. On the other hand, E(Cu-OC(O)R) is larger than $E(Cu-CH_3)$ by ca. 50 kcal/mol, indicating that the term, $E(Cu-OC(O)R) - E(Cu-CH_3)$, is responsible for the greater exothermicity of the CO₂ insertion than that of the C₂H₄ insertion. In other words, the greater exothermicity of the CO₂ insertion is because the Cu-OC(O)CH₃ bond is stronger than the Cu-CH₃ bond.

Similarly, exothermicities of the CO₂ and C₂H₄ insertion reactions into the Cu-H bond are represented by eqs 11 and 12, respectively. The difference, E(=C=O) - E(=C(O-)-),

$$E_{exo} = E(Cu-OC(O)H) + E(=C(O-)-) + E(H-C(O)OR) - E(Cu-H) - E(=C=O)$$

= E(Cu-OC(O)H) + {E(=C(O-)-) - E(=C=O)} + E(H-C(O)OR) - E(Cu-H) (11)

$$E_{exo} = E(Cu-C_{2}H_{5}) + E(-CH_{2}-CH_{2}-) + E(H-C_{2}H_{5}) - E(Cu-H) - E(>C=C<)$$

= $E(Cu-C_{2}H_{5}) + \{E(-CH_{2}-CH_{2}-) - E(Cu-H_{5}) - E(Cu-H_{$

is larger than the difference, $E(>C=C<) - E(-CH_2-CH_2-)$, as discussed above. E(H-C(O)OR) is calculated to be similar to $E(H-C_2H_5)$, as shown in Table 4. Thus, these two terms cannot explain the greater exothermicity of the CO₂ insertion into the Cu-H bond. On the other hand, E(Cu-OC(O)H) is much larger than $E(Cu-C_2H_5)$. This is a major reason for the greater exothermicity of the CO₂ insertion into the Cu-H bond than that of the C₂H₄ insertion.

Precursor Complexes (PC), Transition States (TS), and the Activation Energies (E_a) . Geometries of PC and TS are shown in Figures 1 and 2, respectively. In the PCs, the Cu-

Figure 2. Optimized geometries of transition state in the CO_2 and C_2H_4 insertions into the Cu-H and Cu-CH₃ bonds. Bond lengths are given in Å and angles in degree.

Chart 1

 CO_2 and $Cu-C_2H_4$ distances are considerably longer than and the geometries of CO_2 , C_2H_4 , and $CuR(PH_3)_2$ parts only slightly distorted from those of the reactants. Consistent with these geometrical features, stabilization energies of PCs (Tables 2 and 3) are much smaller than that of the usual coordinate bond, indicating that CO_2 and C_2H_4 weakly interact with $CuR(PH_3)_2$ like a van der Waals complex.

In the TS of the CO₂ insertion into the Cu-H bond (3A in Figure 2), both C-H and Cu-O¹ distances between CO₂ and CuH(PH₃)₂ are much longer than those in the product. The Cu-H and C-O¹ bonds lengthen somewhat by ca. 0.1 Å and ca. 0.05 Å respectively, and the CO_2 part starts to bend (<OCO = 150°). Similar features are observed in the TS of the CO₂ insertion into the $Cu-CH_3$ bond (3B in Figure 2). There is, however, a critical difference between 3A and 3B; the CH₃ ligand moves considerably downward and changes its direction toward the incoming CO₂ molecule, whereas the H ligand only moves slightly downward at the TS. This difference between CuH(PH₃)₂ and Cu(CH₃)(PH₃)₂ is easily interpreted in terms of the valence orbitals of CH₃ and H ligands. Because of the highly directional sp³ valence orbital, the CH₃ ligand must change its direction toward CO₂ in order to form a new bond with CO_2 . At the same time, the CH_3 ligand wants to keep a bonding interaction with Cu as much as possible. Thus, the downward movement of CH3 occurs to satisfy these two requisites, as schematically shown in Chart 1A. On the other hand, the H ligand does not need to change its position because Chart 2

it can form a new bond with the incoming CO_2 , keeping the coordinate bond with Cu, due to its spherical 1s valence orbital (Chart 1B).

The TS of the C₂H₄ insertion into the Cu-R bond (R = H or CH₃) exhibits interesting features (Figure 2), as follows: (1) the Cu-H distance slightly lengthens but the Cu-CH₃ bond lengthens considerably, (2) both H and CH₃ ligands move considerably downward, (3) the C¹-C² bond of C₂H₄ lengthens considerably by 0.13 Å, and the C¹H₂ and C²H₂ planes are remarkably bent back by 26 and 30°, respectively, and (4) the Cu-C¹ distance is short (2.1 Å) like that in the product, but the C²-R bond is still long. These features suggest that the TS of the C₂H₄ insertion is product-like compared to the TS of the formation of the C²-R bond (remember that both Cu-O¹ and C-R bonds between CO₂ and CuR(PH₃)₂ are not yet formed at the TS of the CO₂ insertion). These differences between CO₂ and C₂H₄ insertion reactions will be discussed below.

Activation energies (E_a) of these insertion reactions are given in Tables 2 and 3. Both CO_2 and C_2H_4 insertion reactions into the Cu-H bond occur with lower activation energies than those into the $Cu-CH_3$ bond. This result can be interpreted in terms of the valence orbitals of H and CH₃ ligands, again; as described above, the $CuH(PH_3)_2$ part distorts at the TS to a lesser extent than the $Cu(CH_3)(PH_3)_2$ part because the 1s valence orbital of H is spherical but the sp^3 valence orbital of CH₃ is directional. Accordingly, the insertion into the Cu-CH₃ bond needs a higher activation energy, due to the greater distortion energy of the Cu(CH₃)(PH₃)₂ part. Consistent with this result, Darensbourg et al. experimentally suggested that CO2 could insert into the Ni-H bond but not into the Ni-CH₃ bond.^{27m} The other interesting result to be noted is that the C₂H₄ insertion requires a higher activation energy than the CO₂ insertion, which will be discussed after investigating characters of the TS.

Electron Redistribution in the CO₂ and C₂H₄ Insertion **Reactions and the Reason for Rather Low Activation Energy** of the CO₂ Insertion. Changes in Mulliken populations by these reactions are shown in Figure 3. In all the insertion reactions examined, electron populations of CO2 and C2H4 remarkably increase as the reaction proceeds, indicating that the charge-transfer from CuR(PH₃)₂ to CO₂ or C₂H₄ takes place during these reactions. In the insertion into the Cu-H bond, electron populations of both Cu and H significantly decrease (Figure 3A,C). This implies that the insertion into the Cu-H bond causes the charge-transfer from the H ligand to CO2 or C_2H_4 concomitantly with the polarization of $CuH(PH_3)_2$ which induces electron flow from Cu to H (Chart 2A). In the insertion into the Cu-CH₃ bond, on the other hand, only the electron population of CH₃ decreases considerably, but the electron population of Cu hardly changes (Figure 3B,D), indicating that insertion into the Cu-CH₃ bond causes only charge-transfer to CO₂ or C₂H₄ from the CH₃ ligand (Chart 2B), unlike insertion into the Cu-H bond. This difference between $R = CH_3$ and R = H is easily interpreted in terms of the directionality of the valence orbital, again. Because the Cu-CH₃ bond must be broken to form a new CH₃-CO₂ bond at the TS due to the

Figure 3. Changes in Mulliken populations caused by CO_2 and C_2H_4 insertions into the Cu-H and Cu-CH₃ bonds: (A) CO_2 insertion into the Cu-H bond; (B) CO_2 insertion into the Cu-CH₃ bond; (C) C_2H_4 insertion into the Cu-H bond; (D) C_2H_4 insertion into the Cu-CH₃ bond.

Scheme 2

directional sp³ valence orbital of CH₃, the electron flow from Cu to CH₃ becomes difficult around the TS. On the other hand, the electron flow from Cu to H can occur, because the Cu-H bond still exists at the TS due to the spherical 1s valence orbital of H.

Electron redistribution at the TS can be investigated in more detail by inspecting the difference density maps (Figure 4): ρ -[CuR(PH₃)₂···Sub]_{TS} - ρ [CuR(PH₃)₂] - ρ [Sub], where Sub means CO₂ or C₂H₄. An important feature found in the CO₂

insertion (Figure 4A) is that electron density accumulates on the terminal O atoms but slightly decreases on the central C atom (a similar feature is observed in the CO₂ insertion into the Cu-CH₃ bond, the picture of which is omitted here for brevity). This feature arises from the HOMO, Ψ_{HOMO} (CuR···CO₂), of the reaction system. This Ψ_{HOMO} (CuR···CO₂) resembles quite well the HOMO, $\Psi_{HOMO}(CO_2 \cdot \cdot \cdot R^-)$, of the $CO_2 \cdot \cdot R^-$ system, as clearly shown in Figure 4C,E. Both $\Psi_{HOMO}(CuR{\boldsymbol{\cdot}}{\boldsymbol{\cdot}}{\boldsymbol{\cdot}}CO_2)$ and $\Psi_{HOMO}(CO_2{\boldsymbol{\cdot}}{\boldsymbol{\cdot}}{\boldsymbol{\cdot}}R^-)$ mainly consist of the large p_{π} orbital of O, the very small p_{π} orbital of C, and the HOMO of R⁻, which are formed through orbital mixing among the π and π^* orbitals of CO₂ and the HOMO of R⁻; as shown in Scheme 2A, the HOMO of R⁻ overlaps with the π^* orbital of CO₂ in a bonding manner, into which the π orbital of CO₂ mixes in an antiboding manner with the HOMO of R⁻ because the former lies at lower energy than the latter. This orbital mixing decreases the p_{π} orbital of C but enhances the p_{π} orbital of O, which leads to accumulation of electron density on the O atoms but a slight decrease of electron density on the C atom, as we have seen in Figure 4A.

In the C₂H₄ insertion, electron density accumulates on the C¹ atom but decreases on the C² atom (see Figure 4B, a similar feature is observed in the C₂H₄ insertion into the Cu-CH₃ bond, the picture of which is omitted here to save the pages). This feature is explained in terms of the HOMO of the reaction system, $\Psi_{HOMO}(CuR^{\bullet\bullet\bullet}C_2H_4)$, again. As shown in Figure 4D,F, this HOMO resembles quite well the HOMO of the C₂H₄ $\bullet\bullet$ ·R⁻ system, $\Psi_{HOMO}(C_2H_4\bullet\bullet$ R⁻). The HOMO, which mainly consists of the large p_{π} orbital of C¹, the small p_{π} orbital of C²,

Figure 4. Maps of difference density (A and B) and HOMO at the transition state of CO₂ and C₂H₄ insertions into the Cu-H bond (C-F): (A) [CuH(PH₃)₂···(CO₂)], **3A**; (B) [CuH(PH₃)₂···(C₂H₄)], **9A**; (C) [CuH(PH₃)₂···(CO₂)]; **3A**, (D) [CuH(PH₃)₂···(C₂H₄)], **9A**; (E) CO₂···H⁻; (F) C₂H₄···H⁻. Key: (a) countour values for density are ± 0.05 , ± 0.02 , ± 0.01 , ± 0.005 , ± 0.002 , and ± 0.01 ; (b) contour values for contour are ± 0.2 , ± 0.1 , ± 0.05 , ± 0.02 , and ± 0.01 .

and the HOMO of R⁻, are formed through the orbital mixing among the π and π^* orbitals of C₂H₄ and the HOMO of R⁻; the HOMO of R⁻ overlaps with the π^* orbital of C₂H₄ in a bonding manner, into which the π orbital of C₂H₄ mixes in an antibonding manner with the HOMO of R⁻ because the former lies at lower energy than the latter, as shown in Scheme 2B. This orbital mixing enhances the C¹ p_{π} orbital but decreases the C² p_{π} orbital in $\Psi_{\text{HOMO}}(\text{C}_2\text{H}_4 \cdot \cdot \text{R}^-)$ and $\Psi_{\text{HOMO}}(\text{CuR} \cdot \cdot \text{C}_2\text{H}_4)$, which leads to an increase of electron density on the C¹ atom but a decrease of electron density on the C² atom.

Electron redistribution in the region between R and Sub (Sub = CO₂ or C₂H₄) is important for the insertion reaction. At the TS of the CO₂ insertion, electron density accumulates in this region (Figure 4A). Actually, the considerable C-R bonding overlap between CO₂ and CuR(PH₃)₂ is observed in the Ψ_{HOMO} -(CuR···CO₂) (Figure 4C). At the TS of the C₂H₄ insertion, on the other hand, electron density decreases in this region (Figure 4B). Because the Ψ_{HOMO} (CuR···C₂H₄) involves the considerable C²-R bonding overlap between C₂H₄ and CuR(PH₃)₂, like that in the CO₂ insertion (Figure 4D), the decrease in the density

arises not from the $\Psi_{HOMO}(CuR \cdot \cdot C_2H_4)$ but from the other interaction, i.e., exchange repulsion between the π orbital of C_2H_4 and the HOMO of R. Approach of C_2H_4 to R would be difficult due to this strong exchange repulsion, which disfavors the C_2H_4 insertion into the Cu-R bond and leads to the high activation energy. In the case of the CO₂ insertion, this kind of exchange repulsion would be small because the π orbital of CO₂ lies considerably lower in energy (-19.37 eV) than that of C_2H_4 (-9.63 eV).⁵¹ Accordingly, the C_2H_4 insertion requires a higher activation energy than the CO₂ insertion.

Finally, an interaction between Cu and Sub will be investigated. At the TS of the CO₂ insertion, electron density decreases in the region between Cu and O¹ atoms (Figure 4A). At the TS of the C₂H₄ insertion, on the other hand, electron density increases in this region (Figure 4B). Consistent with this result, $\Psi_{HOMO}(CuR \cdot \cdot C_2H_4)$ at the TS of the C₂H₄ insertion involves a strong bonding interaction between Cu and C¹ atoms (Figure

⁽⁵¹⁾ Geometries of CO₂ and C₂H₄ were taken to be the same as the distorted structures like in the TSs of their insertion reactions into the Cu-H bond.

Figure 5. Changes in total energy caused by the CO_2 insertion into the Cu–OH bond of Cu(OH)(PH₃)₂, 1C.

4D), while $\Psi_{HOMO}(CuR \cdot \cdot CO_2)$ at the TS of the CO₂ insertion involves an apparently weaker bonding interaction between Cu and O¹ atoms than that between Cu and C¹ atoms in Ψ_{HOMO} - $(CuR \cdot \cdot C_2H_4)$ (Figure 4C). All these features are consistent with the TS structure in which the $Cu-C^1$ distance is short at the TS of the C_2H_4 insertion but the Cu-O¹ distance is long at the TS of the CO₂ insertion. The short $Cu-C^1$ and the long Cu-O¹ distances are explained in terms of HOMOs, $\Psi_{HOMO}(C_2H_4 \cdot \cdot \cdot R^-)$ and $\Psi_{HOMO}(CO_2 \cdot \cdot \cdot R^-)$. These HOMOs (Figures 4E and 4F) are calculated to be -2.61 eV for $CO_2 \cdot \cdot \cdot H^-$, -2.52 eV for $CO_2 \cdot \cdot \cdot CH_3^-$, 0.56 eV for $C_2H_4 \cdot \cdot \cdot H^-$, and 0.07 eV for $C_2H_4 \cdot \cdot CH_3^-$, where geometries are taken to be the same as those in the TSs. This means that approach of R^- to C_2H_4 yields the HOMO at considerably high energy but approach of R^- to CO₂ yields the HOMO at rather low energy. Accordingly, $\Psi_{HOMO}(C_2H_4\cdots R^-)$ can form a much stronger charge transfer interaction with Cu than does $\Psi_{HOMO}(CO_2 \cdot \cdot R^{-})$, leading to the short $Cu-C^1$ distance at the TS of the C_2H_4 insertion. The $Cu-O^1$ distance is, however, rather long at the TS because the charge transfer from $\Psi_{HOMO}(CO_2 \cdot \cdot \cdot R^-)$ to Cu is not very strong.

CO₂ Insertion Reaction into the Cu–OH Bond of Cu-(OH)(PH₃)₂. Interestingly, the CO₂ insertion into the Cu–OH bond proceeds with no barrier, as clearly shown in Figure 5. The following geometry changes are observed (Figure 6): the Cu–OH distance is getting longer, the Cu–O¹ distance is getting shorter, and the $\angle O^1CO^2$ angle gradually closes. All these results indicate that the Cu–OH bond is gradually broken, the Cu–O¹ bond is gradually formed, and the Cu–OC(O)OH bond is smoothly produced. The geometry at the late stage of this reaction is very close to that of the product, Cu(η^1 -OCO(OH))-(PH₃)₂ (4C) (see the geometry at $R(O-CO_2) = 1.6$ Å). After the insertion, 4C converts to 5C with a very small barrier (ca. 2.6 kcal/mol at the MP2/BS III level) and 5C converts to the final product, Cu(η^2 -O₂COH)(PH₃)₂ (6C), with no barrier (Figure 5).

Energy change by this insertion reaction considerably depends on electron correlation. Calculations at both HF and SD-CI levels, however, show that this insertion proceeds with no barrier. Unexpectedly, the exothermicity of this insertion (27.1 kcal/mol for 6C (SD-CI(P)/BS III)) is calculated to be much smaller than that of the CO₂ insertion into Cu-H and Cu-CH₃ bonds, whereas CO₂ can insert into the Cu-OH with no barrier. The exothermicity of this insertion is approximately represented by eq 13.5^{50} The HO-C(O)OH bond energy is

$$E_{\text{exo}} = E(\text{Cu}-\text{OC}(\text{O})\text{OH}) + E(\text{HO}-\text{C}(\text{O})\text{OH}) + E(\text{=C(O-)-}) - E(\text{Cu}-\text{OH}) - E(\text{=C=O})$$

$$E_{\text{exo}} = \{E(\text{Cu}-\text{OC}(\text{O})\text{OH}) - E(\text{Cu}-\text{OH})\} + \{E(=\text{C}(\text{O}-)-) - E(=\text{C}=\text{O})\} + E(\text{HO}-\text{C}(\text{O})\text{OH})$$
(13)

estimated to be 87 kcal/mol, only slightly smaller than the C-C(O)OH bond energy (92 kcal/mol) (Table 4). On the other hand, the term E(Cu-OC(O)OH) - E(Cu-OH) is calculated to be 29 kcal/mol, much smaller than the term E(Cu-OC(O)R) - E(Cu-R), as shown in Table 4. Consequently, this insertion is less exothermic than the CO₂ insertion into the Cu-H and Cu-CH₃ bonds.

No activation energy of this insertion can be interpreted in terms of the HOMO of $Cu(OH)(PH_3)_2 \mathbf{1C}$. Unlike the HOMOs of **1A** and **1B**, the HOMO of **1C** mainly consists of a lone-pair type orbital of OH⁻ which is not used for a coordinate bond with Cu (structure I). As a result, the LUMO of CO₂ can easily

interact with this orbital. This means that the bonding interaction between CO_2 and OH is formed without weakening the Cu–OH bond. On the other hand, both H and CH₃ ligands have only one valence orbital which is used for bonding with Cu in **1A** and **1B**. Accordingly, the CO₂ insertion into the Cu–H bond weakens the Cu–H bond even though the 1s valence orbital of H is spherical, and the CO₂ insertion into the Cu–CH₃ bond considerably weakens the Cu–CH₃ bond because of the directional sp³ valence orbital of CH₃. Thus, the CO₂ insertion into the Cu–OH bond occurs more easily than the CO₂ insertion into the Cu–H and Cu–CH₃ bonds.

Concluding Remarks

Ab initio MO/MP4, SD-CI, and CCD calculations are carried out on the insertion reactions of CO₂ and C₂H₄ into the Cu-R bond (R = H, CH₃, and OH). The activation energy (E_a) is calculated to be very low (ca. 4-5 kcal/mol) for the CO₂ insertion, relatively high (9-10 kcal/mol) for the C₂H₄ insertion into the Cu-H bond, and very high (23-30 kcal/mol) for the C_2H_4 insertion into the Cu-CH₃ bond. These results suggest that the C_2H_4 insertion into the Cu-R bond is more difficult than the CO_2 insertion into the Cu-R bond. The difference of $E_{\rm a}$ between CO₂ and C₂H₄ insertion reactions can be interpreted in terms of the exchange repulsion between R and Sub (Sub = CO₂ or C₂H₄); because the π orbital of C₂H₄ lies higher in energy than that of CO_2 , the exchange repulsion between C_2H_4 and R is much larger than that between CO₂ and R, leading to the higher E_a value of the C₂H₄ insertion. The exothermicity of the CO_2 insertion is much greater than that of the C_2H_4 insertion. The main reason for the greater exothermicity of the CO_2 insertion is that E(Cu-OC(O)H) is larger than E(Cu-OC(O)H) C_2H_5) and $E(Cu-CH_3)$ by ca. 50 kcal/mol. CO₂ insertion into the Cu-OH bond proceeds with no barrier. This is because

Figure 6. Changes in geometry caused by the CO₂ insertion into the Cu–OH bond of Cu(OH)(PH₃)₂, 1C. Bond distances are given in Å and bond angles in degree.

the HOMO of Cu(OH)(PH₃)₂ mainly consists of the lone-pair type orbitals of OH⁻, and the bonding interaction between CO₂ and OH can be formed without weakening of the Cu–OH bond. However, E_{exo} of this insertion is smaller than that of the other CO₂ insertion, since the Cu–OC(O)OH bond energy is about 29 kcal/mol larger than the Cu–OH bond energy (remember that the Cu–OC(O)R bond energy is about 50 kcal/mol larger than the Cu–CH₃ bond energy).

From these results, one can predict a primarily important factor for the CO_2 insertion is the presence of a lone-pair type orbital of R which is not used for coordination to Cu. When the R ligand possesses such a lone-pair type orbital, the bonding

interaction between this lone-pair type orbital and the LUMO of CO_2 can be formed without weakening of the Cu-R bond. This situation facilitates the CO_2 insertion into the Cu-OH bond.

Acknowledgment. A Hitachi S-820 computer of the Institute for Molecular Science (Okazaki, Japan) and an IBM-340 work station of our laboratory were used for these calculations. This work is partially supported by a Grant-in-Aid from the Ministry of Education, Culture, and Science (Japan) (Nos. 04243102 and 06227256).

IC931341Z